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Abstract—In this work1, we consider a set of networking
applications which generate or process a continuous stream
of data items, for example, a web-cache which processes a
stream of web-objects. These applications often require to answer
membership queries for duplicate detection on an unbounded set
of data items. Two key challenges to answer such membership
queries are the limited space to store the entire stream and
the different importance-levels associated with different data
items. For instance, a web-caches are of finite sizes and the
cost of fetching objects into the cache is proportional to the size
of objects. Motivated by such examples, our work focuses on
developing a time and space efficient indexing and membership
query scheme which takes into account importance levels of
objects in a data stream. We propose Importance-aware Bloom
Filter (IBF) which provides a set of insertion and deletion
algorithms to handle membership queries on a data stream. Our
evaluation of IBF for a synthetic as well as a real data set of a
stream of Youtube videos, shows that IBF has close to 0% error
in answering membership queries on important data items, and
it results in 4-fold better performance in comparison to other
importance-agnostic Bloom filter-based schemes. Importantly, we
also find properties of IBF analytically via a Markov model based
analysis. Thus, we believe, IBF provides a practical framework to
balance the application-specific requirements to index and query
data streams based on the data semantics.

I. INTRODUCTION

Several networked-services such as news feeds [6], stock
trades [1], [2], [4], sensors-based cyber physical systems [5],
[3], and ever increasing web-based utilities etc., are contin-
uously generating data. Such data streams are also being
consumed by various networking and data distribution appli-
cations, e.g., web-pages are used by web-crawlers to update
the page-ranks, or web-objects are used by client-applications
to load a web-page or to play multimedia content etc.

Along with generation or consumption of such data streams,
these applications often process the data streams to record
relevant information. For instance, before delivering the web-
objects, content distribution networks often store web objects
in a proxy-cache (a temporary store of web-page streams
closer to the users); such storage of a stream of web-objects,
thus, can reduce the network bandwidth and latency costs
due to local cache-hits. Web crawlers too process a stream of
web-links and maintain temporary state to avoid unnecessary

1This work was done when Ravi Bhoraskar and Vijay Gabale were students
at IIT Bombay.

crawling of already visited web-links. An important factor
that determines the efficacy of such intermediate processing,
and thus application performance, is the effective “state”
maintenance of data streams. To understand the notion of state
maintenance, consider the following scenarios,

Scenario 1: Caching at Edge Proxies. Consider a content
distribution network (CDN) with a set of cooperating edge
proxies. The proxies “cooperate” by sharing information about
cached objects, —each proxy maintains state about the set of
cached objects at other proxies. Such a collective cache is used
to resolve web requests by restricting the processing “closer”
to the users. A critical constraint on proxies, while processing
a stream of web-objects, is the finite cache size.

Further, the cache contents are updated frequently based on
several replacement policies (LFU, LRU etc.). As a result, the
updated state of a cache needs to be periodically exchanged
with other caches to ensure that the cooperative-caches work
efficiently. However, such periodic exchange of cache state
can incur significant network overhead. To minimize such
network overheads, one effective scheme to exchange state
information is via a Bloom filter-based Summary-cache [9],
[14]. The Bloom filter, being a fixed-sized data structure has
fixed overheads for storage and exchange. However, a Bloom
filter is probabilistic with respect to representation of a set
of objects2— false positives and false negatives can result
on membership queries. For a Summary-cache, the objects
inserted in the Bloom filter are web-object identifiers. Before
serving a web-object from a remote web-server, a proxy can
look up the web-object locally in Bloom filter representations
of other caches. If a local-hit occurs, then the object can be
served from the corresponding cache.

A Bloom filter is a probabilistic data structure and queries
on the cache-state may result in false positives or false
negatives 3. An initial desired property for the Summary-cache
is to keep false negatives low. A more subtle requirement can
arise when cache-misses result in differentiated costs, e.g., the
bandwidth and latency costs of fetching a large web object is
higher than a smaller object. Thus, a more suitable property is
to have lower false negative rates for larger-sized frequently-

2The Bloom filter size is constant and hence the tradeoff.
3For a query, a false costive occurs when the Bloom filter answers ‘yes’

to a query even if the data item is not inserted in the filter. Similarly, a false
negative is when the Bloom filter answers ‘no’ to a query even if the data
item was inserted in the filter.978-1-4673-5494-3/13/$31.00 c© 2013 IEEE



accessed objects at the cost of smaller-sized seldom-accessed
objects.
Scenario 2: A simple Web-crawler. Consider a simplistic

web crawler which collects a set of links on a web page and
then crawls those links recursively. A subset of those links,
being more popular, may appear on multiple web pages. Thus,
when the crawler is visiting a stream of links, it is important
to identify such popular links as accurately as possible and
avoid crawling them multiple times.
To meet these requirements, the crawler has to maintain a

history of previously of crawled-pages. Since the stream of
crawled pages is potentially very large, given a finite storage
space or finite time for duplicate detection, the state of crawled
pages has to be approximate or reset periodically. Similar
to the web-caching scenario, a nuanced requirement for the
history maintenance would be to maintain an accurate record
of the popular pages, while less popular pages can be evicted
from the history more frequently. Since less popular pages
occur infrequently, they will cause fewer redundant crawls.
Examples in the above two scenarios fit the general category

of applications that require to maximize “cost savings” while
indexing and detecting duplicates in a data stream with finite
storage space. For example, for a cooperative cache, the web-
objects are required to be indexed in a fixed size Summary-
cache such that the accuracy of serving large-sized objects is
maximized. Thus, a state building mechanism cognizant to the
importance of data items can prove vital to the performance
such applications. In this work, we consider storing such state
of a data stream in a finite memory space while processing
queries on an unbounded stream of data items. There exist
numerous challenges in storing and querying such unbounded
data streams.

1) Since data streams are continuous and unbounded, it is
impractical to store the entire data during query pro-
cessing, especially so in finite-memory systems. Hence,
traditional techniques (for indexing and storing) used
with relational databases [7] are not directly applicable
in the context of data streams.

2) Given a finite memory system, it is difficult to provide
precise answers to queries. One way to achieve precision
is the time-based sliding window [8] technique. How-
ever, such a technique is constrained by the finite size
of the sliding time-window, and may not be applicable
to bursty data arrival or unpredictable data distributions.
Hence, given a finite memory system, one has to rely
on approximating the answers to set membership queries
on an unbounded data stream.

3) A subtle challenge lies in capturing the importance of
data items while answering the set membership queries
approximately. Since important data items have higher
“cost” implications, the indexing and state maintenance
scheme should reflect the differentiation in object-
importance.

In this respect, our work focuses on developing an indexing
and membership query scheme for a stream of data items with
different importance levels. Our goal is to store an approximate
summary of each data item using a hash-based index, the
Bloom Filter (BF) [9]. However, since the volume of data

insertions is high the traditional Bloom Filter would quickly
“fill up”, and lead to a large number of false positives (FPs).
Recent work, Stable Bloom Filters (SBF) [12], limits the false
positives by clearing cells of the filter over time, however, it
is agnostic to data importance, both during insert and delete
operations. Thus, a key challenge lies in exploiting the data-
importance semantics during insertion and deletion of items
to maximize performance of query processing. Specifically, in
this work, we make following contributions.

• We propose Importance-aware Bloom filter (IBF), a time
and space efficient data structure for indexing and query-
ing data items on an unbounded set based on data-
semantics.

• Via Markov chain based analysis, we show the IBF is
stable, i.e., the Bloom filter has a constant upper-bound
on the false-positive and false-negative rates irrespective
of the stream size.

• Our evaluation of IBF for a synthetic as well as a real data
set shows that IBF has close to 0% error in answering
membership queries on important data items, and results
in up to 4-fold better accuracy (in terms of false positive
and false negative rates) compared to other Bloom filter-
based schemes.

The rest of the paper is organized as follows. In next section,
Sec. II, we describe preliminaries of our problem, and give a
brief sketch of IBF. In Sec. III, we describe IBF in detail
and analyze its properties theoretically. Next, in Sec. IV, we
show effectiveness of IBF by experimentally comparing it with
Bloom filter-based mechanisms. In Sec. V, we describe prior
work in indexing and querying streaming data. Finally, in
Sec. VI, we discuss future work, and conclude the paper.

II. BACKGROUND AND PROBLEM FORMULATION

Our work is partially inspired by the work in [12] which
proposes a data structure to approximately answer membership
queries on a stream of data items. In this section, first, we
briefly describe work in [12]. Then, we explain why work
in [12] is not suitable to our problem. Subsequently, we
formally formulate the problem under consideration.

A. Bloom filter

Traditionally, the Bloom filter [9] (BF) data structure has
been used to store data items to approximately answer the
membership query. A membership query asks whether a data

item di is present in the memory or not. Note that, a Bloom
filter only stores a hash for each data item, whereas the data
items are physically stored in a separate memory (typically
an external disk-memory), distinct from the Bloom filter.
To answer a membership query for an item, a Bloom filter
takes the hash of the data item, and returns the answer as
‘Yes’ or ‘No’ in a constant time, but with some probability.
The entire Bloom filter can reside in main memory, and it
takes constant number of memory accesses to know whether
an item is present or not. Thus, it is time-efficient than
indexing data structures like B-Tree or B+-Tree, which require
several memory accesses to search for an item. However, the
constant time search of Bloom filter comes at the cost of the



probabilistic behavior in answering the membership query. We
now define Bloom filter formally.
A Bloom filter is essentially an array of m bits, initially set

to 0. When a new item dj is to be stored in the memory, BF
uses K uniformly distributed and independent hash functions,
and computes K bit locations: {h1(dj), h2(dj), . . . , hk(dj)},
to be set to 1. To answer a membership query on data item
dj , BF again applies K hash functions, and checks whether
all of the corresponding K bit locations are set to 1 or not.
If so, BF replies ‘true’ to the query, indicating the presence
of a duplicate for data item dj . However, it is possible that
the K bit locations are set due to insertion of some other data
items previously stored in the filter (which were mapped to
a subset of these K bit locations). This gives rise to a false
positive; the case where BF can incorrectly answer ‘true’ to a
given query. To explain the false positives formally, consider
a query Q(d), which tests for the membership of item d. A
false positive occurs when d is not present in BF, but Q(d)
returns true (d is present in BF). A false negative occurs when
Q(d) returns false, although d was inserted in the BF.

B. Stable Bloom Filter

The basic BF explained above, with a fixed number of bits,
may not be applicable to store the data items in a stream. This
is because, as more and more elements arrive, the fraction of
zeros in the BF decreases continuously, and the false positive
rate increases accordingly. Eventually, the false positive rate
reaches the limit, 1, where every distinct item is reported as a
duplicate. To avoid this problem, the work in [12] extends the
basic Bloom Filter data structure, and proposes Stable Bloom
Filter (SBF), which (1) adds an “eviction” operation to BF,
and (2) supports querying on a stream of data items. This
way, by deleting a set of items, SBF avoids the error rate
from exceeding a predefined threshold.
We now give a brief description of SBF. A SBF is defined as

an array of integers SBF[1],...,SBF[m]. The size of the array
is m elements, and each element can take a minimum value
of 0, and a maximum value M . Each element of the SBF is
called as a cell. Each cell of the array is allocated d bits; the
relation between M and d is M = 2d − 1. The initial value
of the cells is zero. Each newly arrived item in the stream
is mapped to K cells by some uniform and independent K
hash functions. As in a regular Bloom filter, SBF checks if
a new item is duplicate or not by checking whether all the
cells the item is hashed to are non-zero. After the duplicate
detection process, before inserting new item into the SBF, it
randomly decrements P cells by 1 so as to make room for
fresh items, and then sets the K cells, used during duplicate
detection process, to M .
In [12], the authors prove that after a number of iterations,

the fraction of zeros in the SBF will be non-zero irrespective of
the values of M, K or P. This is termed as the stable property,
and hence the name Stable Bloom Filter. Thus, because of
the presence of a definite set of cells set to ‘0’, SBF proves
that, if the stream elements are uniformly distributed, the false
positive rate can be upper bounded.
However, we observe that, the work on SBF in [12] is

not suitable to our problem since SBF does not differentiate

between items based on the importance values while during
indexing and membership query operations. Thus, the process-
ing of a data stream by SBF may result in a high cost if a
large fraction of data items with high importance suffer from
high false positive rate.

C. Importance-aware Bloom Filter (IBF) overview

To ensure, lower false positive and false negative rates
for important data items, we design Importance-aware Bloom
Filter (IBF). In IBF, as a first step, we modify the insert
operation in SBF [12] to come up with an importance-aware
data structure. The overall result of such modification is that,
items having high importance are stored for longer time.
Similarly, we evict elements from IBF such that, the items
having high importance have less probability of eviction. The
importance-aware insert and delete operation thus result in
lower false positives (and lower false negatives) for items
with high importance. At the same time, as a desirable effect,
(which we confirm through theory and experiments) the false
positive rate and false negative rate for items with lower
importance remains reasonable low.

D. Problem Formulation

Following is a formal statement of the problem to index
and query an unbounded data stream. Let I : di → IMP

be an importance-function that maps some attribute of the
data item di to corresponding importance value impi, We
assume that items arrive in a stream denoted by D = d1, d2,
. . . , dn, where n is the number of items arrived so far. The
value of n is assumed to be unbounded. We assume that a
fixed hash function is used each data item to convert it into
a number, and henceforth, when we refer to an item di, it
is the hash or fingerprint of the original data item. Now,
given D, I and a finite amount of memory S, our overall

objective is to store items in D so that membership of an
item di ∈ D can be determined in constant time. Further,
the confidence of answers to membership queries corresponds
to impi (importance values) of data items—low false negative
rates and low false positive rates for data items with data items
with higher importance.

III. THE IBF ALGORITHM AND ANALYSIS

TABLE I
IBF PARAMETERS

Storage space SS

Total number of cells m

Maximum value of a cell M

Importance map or function I

No. of hash functions K

No. of cells to delete P

As we mentioned in last section, we insert or delete el-
ements in IBF such that, important data items have lower
probability of false positives or false negatives. In this section,
we first describe a simple extension of SBF, IBF-2C (2C stands
for two classes). In comparison to SBF, which sets the values
of cells to M while inserting a new item, in IBF-2C, we either



set the cell values to M
2 or to M , depending on importance of

the data item. In a generic case, we assume that a function f
is given to us, which maps the importance value to a number
between 1 and M , i.e., f : impi → (1,M). In case of
IBF-2C, this function maps the importance value to either M

2
or M . Next, we describe a generalization of IBF, IBF-MC,
where while inserting an item, we set the cell values to a
number ∈ (1,M) based on the importance value of the data
item. For IBF-2C as well as IBF-MC, we present analysis of
false positive and false negative rates, and prove the stability
property. Our proofs are inspired by the lemmas in SBF [12],
however, our approach is more generic in terms of modeling
IBF using a Discrete Time Markov Chain (DTMC).

A. IBF-2 Class (2C)

We now introduce IBF-2C, an Importance-aware Bloom fil-
ter which has importance-aware insert operation, and random
delete operation.

p1 p2

p’ p’ p’

0 1 M/2 M−1 M

1−p’

k/2 k/2
k/2

k/2k/2

p’

1−k

p2

Fig. 1. IBF-2C: Important Insert Random Delete

Importance-aware Bloom Filter-Two Class (IBF-2C)

An IBF-2C is defined as an array of integers IBF [1], . . .
, IBF [m]. The value of each cell of the array is between
0 (minimum) or M (maximum). The update process follows
Algorithm 1 with K independently and uniformly distributed
hash functions. Each cell of the array is allocated d bits; the
relation between M and d is M = 2d − 1.
We now explain Algorithm 1. The parameters used in the

algorithm are shown in Tab. I. In this algorithm, each incoming
element is mapped to K cells by K uniform and independent
hash functions. We then check, by probing the K cells, whether
all the cells are non-zero, and see if the element is a duplicate.
After this step, we update IBF-2C as follows. We first pick P
cells randomly, and decrement the cell value by 1 (unless it is
already zero). This step is to make room for future elements
in the stream. We then set the same K cells to either M

2 , if the
data item is not important or M, if the data item is important.
Analysis: We analyze IBF-2C, and prove the stable prop-

erty, which states that when the number of items in stream are
sufficiently large, the fraction of zeros in IBF-2C will converge
to a fixed value irrespective of the values of M, K, and P. This
is an important property from both theory as well as practical
point of view as it bounds the false positive rate.
To analyze IBF-2C, we assume that the data items as well

as the importance values are uniformly distributed. We then
model the cell value of IBF-2C as a Discrete Time Markov
Chain as shown in Fig. 1. Note that, each iteration of the
algorithm is a time step in the Markov chain. Thus, in each
time step, the cell value is either decremented by 1 or is set to
M
2 or M , or remains the same. These conditions are captured

in transition probabilities in the Markov chain as shown in
fig. 1. If a cell value is T , after one iteration it goes to state
T − 1 with probability p′ = p × (1 − k), where p is the
probability of decrementing a cell, and k is the probability
setting the cell. Note that p = P

m
and k = K

m
. If the cell is

set, it goes to state M
2 , with probability k

2 or to state M with

probability k
2 . Otherwise, the cell remains in the same state. It

is easy to see that this Markov chain is indeed a valid discrete
time Markov chain with irreducibility (every state is reachable
from every other state) and aperiodicity (period of recurrence
for each state is 1). As shown in [22], for any irreducible,
aperiodic Markov chain, the limiting probabilities Vi for each
state exist and are unique. We now prove the stable property
of IBF which states that, after a large number of iterations, the
expected fraction of zeros in IBF are constant. This theorem
would show that there is always enough ‘room’ in IBF. Further,
it would be useful to show the bound on false positive and
false negative rates of IBF-2C. To prove this property, we first
calculate the limiting probability V0.

Input: A sequence of numbers

Output: A sequence yes or no corresponding to each

input number

Initialize IBF[1],...,IBF[M] to 0.

foreach number xi do
Probe K cells IBF[h1(xi)],...,IBF[hK(xi)].
If(none of the above K cells is 0) DupFlag = yes

Else DupFlag = no

Select P cells uniformly at random.

foreach each cell IBF[j] ∈ { IBF[j1],..., IBF[jp] }
do

If (IBF[j] ≥ 1) IBF[j] = IBF[j] - 1
end

foreach each cell ∈ IBF[h1(xi)],...,IBF[hK(xi)] }
do

If(f(imp(xi)) <
M
2 and IBF[h(xi)] <

M
2 )

IBF[h(xi)] =
M
2

Else IBF[h(xi)] = M
end

Output DupFlag.
end

Algorithm 1: Duplicate detection with IBF-2C.

Theorem III.1. Given an IBF-2C of m cells, if in each

iteration, a cell is decremented by 1 with a probability p and

set to importance value imp ∈ {M
2 ,M} with a probability k,

the limiting probability of a cell becoming zero exists.

Proof: The existence of probability is straightforward
from the Markov model of IBF-2C. Since the Markov chain
is irreducible, aperiodic and stable, each state i will have a
non-zero limiting probability Vi [22]. Thus, there is non-zero
probability that a cell will have its value zero in limiting
cases. We now compute the limiting probability of a cell
becoming zero, V0. When limiting probabilities exist, the
probability of the system entering a state is same as the



probability of leaving the state, and the sum over probabilities
of all states is 1 [22].
Let Pi,j denote the probability of transition from state i to
state j. Then, for every state i, we have

∑

j

Pj,iVj = (
∑

k

Pi,k)Vi (1)

∑

Vi = 1 (2)

We compute steady state probabilities for each state as
follows. Refer to Fig. 1 to see the transition probabilities.

For state M, using eq. 1,
k

2

M−1
∑

i=0

Vi = p′VM .

But by Eq. 2,
∑M

i=0 Vi = 1 →
∑M−1

i=0 Vi = (1− VM ).

Thus,VM (p′ + k
2 ) =

k
2 ,which implies,VM =

k
2

p′+ k
2

.

For state (M-1), using eq. 1, (
k

2
+ p′)VM−1 = p′VM .

→ VM−1 = p′

p′+ k
2

VM ,→ VM−1 = p′

p′+ k
2

k
2

p′+ k
2

.

For state i,
M

2
< i < M,Vi =

(

p′

p′ + k
2

)(M−i)
k
2

p′ + k
2

For state
M

2
, using eq. 1,

k
2

∑
M
2
−1

i=0 Vi + p′V(M
2
+1) =

(

p′ + k
2

)

VM
2

.

ReplacingV(M
2
+1) and

∑

M
2
−1

i=0 Vi by
(

1− VM
2

−
∑M

i=M
2
+1 Vi

)

, we get

k
2

(

1− VM
2

−
∑M

i=(M
2
+1) Vi +

(

p′

p′+ k
2

)
M
2

)

=
(

p′ + k
2

)

VM
2

If A =
∑M

i=(M
2
+1) Vi, and B =

(

p′

p′+ k
2

)
M
2

,

we get VM
2

=
(

k
2

p′+k

)

(1−A−B) .

For state

(

M

2
− 1

)

,

p′VM
2

= (p′ + k)VM
2
−1 → VM

2
−1 =

(

p′

p′+k

)

VM
2

Similarly, for state i,
M

2
> i > 0, Vi =

p′

p′ + k
VM

2

Thus, we can compute each of Vi i ∈ (1,M). Now, using
Eq.(2) gives V0 = (1−

∑M

i=1 Vi), which shows that V0 exists
and can be determined by computing V1 to VM recursively.

Corollary III.2. (Stable Property) After large iterations, the

expected fraction of zeros in IBF-2C is a constant.

Proof: In each iteration, each cell of the SBF has a certain
probability of being set to M or to M/2 by the item hashed to
that cell. For a fixed distribution of input data, the probability
that a particular cell is processed in each iteration is fixed.
Therefore, the probability of each cell being set is fixed. Also,
the probability that an arbitrary cell is decremented by 1 is also
a constant. Now, by theorem III.1, the probabilities of all cells
in the SBF becoming 0 after N iterations are constants, for
sufficiently large value of n. Therefore, the expected fraction

of 0 in an SBF after n iterations is a constant.

Theorem III.3. (Stable Point (Average Case)) When IBF is

stable, the expected fraction of 0s in the IBF is m× V0.

Proof: Since we assume uniform distribution for data
and importance values, each cell has the same limiting prob-
ability of being set zero. Thus, on an average, when IBF-
2C has m cells, the fraction of cells having zero values is
∑m

i=0 Pr(cell i is zero), which is m× V0.
In IBF, there could be two kinds of errors: false positives

(FP) and false negatives (FN). A false positive happens when a
distinct element is wrongly reported as duplicate. A false neg-
ative happens when a duplicate element is wrongly reported
as distinct. We call the respective probabilities as the false
positive rate (FPR) and false negative rate (FNR).

Corollary III.4. (FP Bound When Stable) When IBF is

stable, the FP rate is constant and no greater than FPR,

FPR = (1− V0)
K

Proof: If Vj,0 denotes the probability that the cell
IBF [j] = 0 when IBF is stable, the upper bound on FP rate
is FPR = ( 1

M
(1−V1,0)+ ...+ 1

M
(1−VM,0))

K , i.e., FPR =
(1− 1

M
(V1,0 + ...+ VM,0))

K Note that 1
M
(V1,0 + ...+ VM,0)

is the expected fraction of 0s which is V0 in average case.

False negative rate: False negative rate is related to input
data distribution. As in [12], we define a gap to be the number
of elements between a duplicate and its nearest predecessor.
Suppose a duplicate element xi whose nearest predecessor is
xi−δi is hashed to K cells. A FN happens if any of those
K cells is decremented to 0 during the δi iterations when
xi arrives. From the Markov chain, we can calculate the
probability, Pr0(δi) that a cell is decremented to 0 from M/2
or M within the δi iterations. With this, the probability that

FN occurs is given by Pr(FNi) = 1−
∏K

j=1(1− Pr0(δi)).

B. IBF-Multi Class (MC)

We now briefly describe generalization of IBF-2C, IBF-MC.
In IBF-MC, as per the importance of the data item, we set the
value of a cell to a value between 1 and M . For items with
highest importance, the cell is set to M , whereas for items
with lowest importance, the value will be set to 1.
Importance-aware Bloom Filter-M-Class (IBF -MC) An

IBF-MC is defined as an array of integers IBF [1], . . .
, IBF [m]. The minimum value of each cell is 0, and the
maximum value isM . The update process follows Algorithm 2
with K independently and uniformly distributed hash func-
tions. Each cell of the array is allocated d bits; the relation
between M and d is M = 2d − 1.
The steps in Algorithm 2 are similar to Algorithm 1 except

when we set the cells. In Algorithm 2, the K cells are set to
value between 1 and M based on the importance of the item.
Analysis: Similar to analysis of IBF-2C, we now analyze

IBF-MC. We assume that the data items as well as the
importance values are uniformly distributed. We then model
the cell value of IBF-MC as a discrete time Markov chain
as shown in Fig. 2. In each iteration or time step, the cell



Input: A sequence of numbers

Output: A sequence yes or no corresponding to each

input number

Initialize IBF[1],...,IBF[m] to 0.

foreach number xi do
Probe K cells IBF[h1(xi)],...,IBF[hK(xi)].
if none of the above K cells is 0 DupFlag = yes

else DupFlag = no

Select P cells uniformly at random.

foreach each cell IBF[j] ∈ { IBF[j1],..., IBF[jp] }
do

if IBF[j] ≥ 1 then
IBF[j] = IBF[j] - 1

end

end

foreach each cell ∈ IBF[h1(xi)],...,IBF[hK(xi)] }
do

if IBF[h(xi)] < f(imp(xi)) then
IBF[h(xi)] = f(imp(xi))

end

end

Output DupFlag.
end

Algorithm 2: Approximately Detect Duplicates using IBF.

p’

p1 p2 p2

p’ p’ p’

0 1 M/2 M−1 M

1−p’

k/M

k/M
k/M

k/M

k/M

k/M
k/M

k/Mk/M
k/M

1−k

Fig. 2. IBF-MC: Importance-aware Insert, Random Delete

value is either decremented by 1, or set to a value ∈ (1,M),
or it remains the same. These conditions are captured in
transition probabilities in the Markov chain shown in fig. 2.
This Markov chain is indeed a valid discrete time Markov
chain with irreducibility (every state is reachable from every
other state) and aperiodicity (period of recurrence for each
state is 1). If the cell is set, it goes to state i with probability
k/M . Otherwise, the cell remains in the same state.

Theorem III.5. Given an IBF-MC of m cells, if in each

iteration, a cell is decremented by 1 with a probability p and

set to importance value imp ∈ {1,M} with a probability k,

the limiting probability of a cell becoming zero exists.

Proof: The existence of probability is straightforward
from the Markov model of IBF-MC. Since Markov chain is
stable, each state will have a non-zero limiting probability.
Thus, there is non-zero probability that a cell will have its
value zero in limiting cases. We omit the details of the
probability calculation due to lack of space. The probabilities
can be calculated in same fashion as described in proof of
Theorem III.5.

Corollary III.6. (Stable Property) After sufficiently large

iterations, the expected fraction of zeros in IBF-MC is a

constant.

Proof: Similar to argument in corollary III.2.

Theorem III.7. (Stable Point (Average Case)) When IBF is

stable, the expected fraction of 0s in the IBF is m× V0.

Proof: Similar to argument in Theorem III.3.

Corollary III.8. (FP Bound When Stable) When IBF is

stable, the FP rate is constant and no greater than FPR,

FPR = (1− V0)
K

Proof: Similar to argument in III.4.
The false negative rate can be calculated in similar way as

in IBF-2C.

C. Time complexity

Theorem III.9. Time complexity Given that K , P , and M
are constants (set in IBF a-priori), the processing of each data

element in the input stream take O(1) time, independent of the
size of IBF and the length of the stream.

Proof: The time cost of our algorithm for handling each
element is dominated by K , P and M . Within each iteration,
we firstly probe K cells to detect duplicates, and then pick
P cells to decrement by 1. Then we set K cells to a value
between 1 and M . Since K , P , and M are constants, the time
complexity is O(1).

IV. EXPERIMENTAL EVALUATION

In this section, we compare IBF-2C, IBF-MC with SBF
and BF. Our overall goal is to see how these variants behave
when different data items have different importance. Thus, for
importance aware comparison, we define two new metrics–
weighted false positive and weighted false negatives. We also
track FP and FN rates for a fixed importance value, across all
importance values. For evaluation, we consider two different
data sets, one taken from a real-world trace of accessing video
objects from Youtube, and other generated synthetically. To
make the results independent of the sequence of data items,
we repeat the experiments by taking different permutations of
the data streams.

A. Experiment parameters

Setting M and m. Given fixed storage space SS, we have
SS = log2(M) × m. M is also function of the range of I.
Further, higher value of M entails higher values of K and P
to maintain the same false positive and false negative rates,
which may increase the computational cost per iteration. To
set the appropriate value of M , we set a fixed value of SS,
K and P and experiment with M = {3, 7, 15}. We observe
that M = 7 trades the false positive and false negatives rates
well to keep the sume of the rates lower as compared to the
other two options, M = {3, 15}. We thus choose M = 7.
With M = 7, the importance values are logically partitioned
into 8 classes, and an importance value requires only 3-bits
per cell. However, we wish to note that M = 7 may not
result in best performance for IBF for different data streams.



TABLE II
AGGREGATE BASED EXPERIMENTS: YOUTUBE DATA

Dataset 1 Dataset 2
Algorithm FP FN wFP wFN FP FN wFP wFN

BF 34.81 0 35.29 0 34.81 0 34.17 0
SBF 25.83 0.84 26.23 0.87 26 0.9 25.55 0.81
IBF2C 16.14 2.49 16.34 1.99 10.16 3.97 9.95 2.91
IBFMC 5.19 8.91 5.23 4.76 0.84 14.01 0.87 7.52
IBFH 9.08 13.25 9.39 10.43 0.12 16.07 0.07 10.34
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Fig. 3. Data Distribution: Youtube Data 1
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Fig. 4. False Positives: Youtube Data 1
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Fig. 5. False Negatives: Youtube Data 1
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Fig. 6. Data Distribution: Youtube Data 2
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Fig. 7. False Positives: Youtube Data 2
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Fig. 8. False Negatives: Youtube Data 2
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Fig. 9. Data Distribution: Synthetic Data 1
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Fig. 10. False Positives: Synthetic Data 1
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Fig. 11. False Negatives: Synthetic Data 1

Our primary objective, in setting M = 7 which gives SS
log(M)

cells, is to compare IBF with SBF and BF for a fixed storage
space SS. We consider it advisable to experimentally verify
the appropriate value of M .

Setting K and P. Our theoretical analysis gives a handle
to observe the behavior of IBF-2C and IBF-MC by different
values of input parameters. By using theoretical equations, we
varied the values of K and P , and observed the false positive
and false negative for a set of bench marks. For example, we
select K = 5, and P = 10 based on the result of theoretical
equations which upper bounds the the false positive rate to
our bench mark of 20%.

We consider total space available (SS) to be 16KB. Thus,
with 3 bits per cell, we have about 42.6K cells in IBF. Tab. III
summarizes other experimental parameters.

TABLE III
EXPERIMENTAL PARAMETERS

Storage space SS 16KB

Maximum value of a cell 7

No. of hash functions K 5

No. of cells to delete P 10

B. Performance metrics

Weighted False Positives and Weighted False Nega-

tives: The “impact” of false positives and false negatives
for important items is more than that of a less important
item. Thus, if a false positive or false negative occurs for an
important element, a greater penalty is paid by the application.
This is well captured if we weight the occurrence of the
false positives and false negatives with the importance of the
element for which the FP/FN occurs. Thus, given n queries, we
define weighted-false positive rate (wFP) and weighted-false
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Fig. 12. Data Distribution: Synthetic Data 3
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Fig. 13. False Positives: Synthetic Data 3
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Fig. 14. False Negatives: Synthetic Data 3
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Fig. 15. Data Distribution: Synthetic Data 2
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Fig. 16. False Positives: Synthetic Data 2

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

Importance

F
a

ls
e

 N
e

g
a

ti
v
e

 (
%

)

 

 

BF
SBF
IBF 2C
IBF MC
IBF H

Fig. 17. False Negatives: Synthetic Data 2

negative rate (wFN) as shown below: wFP = (
∑n

k=1 β ×
impk)/(

∑n
k=1 ×impk) where β=1 if Qk generates a FP,

otherwise β=0. wFN = (
∑n

k=1 β × impk)/(
∑n

k=1 ×impk)
where β=1 if Qk generates a FN, otherwise β=0.
FP/FN against importance: While wFP and wFN capture

the overall effectiveness of a probabilistic data structure, they
do not explain the effect of the parameters on individual
data elements. We wish to observe the performance of the
IBF against the importance of the data elements. Suppose the
importance values of the elements are integers in the range
1.....M . Then we define Importance rate arrays(I) for FP (Ifp)

and FN (Ifn). Ifp[i] =
∑M

imp=1
β

∑
M
imp=i

1
where β=1 if Qk generates

a FP, otherwise β=0. Ifn[i] =
∑

M
imp=1

β
∑

M
imp=i 1

where β=1 if Qk

generates a FN, otherwise β=0. The ith entry of the array
Ifp thus gives the false positive rate among elements having
importance i. Similarly, the ith entry of the array Ifn gives
the false negative rate among elements having importance i.
This is our primary metric of comparison.

C. Comparison among Bloom filters

Tab. IV-C shows different Bloom filter data structures we
consider for comparison. IBFH is another variant of IBF,
where insertion is done similar to IBFMC , but the deletion
is performed with respect importance values mapped to a
cell, instead of random delete. We call the deletion scheme
as Probabilistic Delete Val where the probability of choosing
a cell is inversely proportional to the value of the cell itself,
except cells having 0 value. We use this algorithm, so that
elements with high importance are not evicted, thus improving
the false negative rates.

D. Data sets

Real-world data set: We use the traces for the video
accessed from Youtube, a popular video-sharing website, for a
campus network over several days from [17]. We use the IDs
of the videos as our data elements, and a function of the video

Combination

BF M-insert with M=1
SBF M-insert + Random-delete
IBF2C M/2-insert + Random-delete
IBFMC Imp-insert + Random-delete
IBFH Imp-insert + Probabilistic-delete-val

TABLE IV
COMBINATIONS OF INERT AND DELETE PROCEDURES FOR THE

IMPORTANCE-AWARE BLOOM FILTER.

length as the importance. Such a scenario is conceivable for a
cooperative proxy that buffers the videos. Thus, we represent
the state of a proxy by a summary-cache in terms of IBF. The
proxies exchange the IBF to create a combined state of videos
cached in different proxies. Since the overhead for fetching
a longer video from the network is higher, the penalty for
false negatives is high. Hence, we assign higher importance to
longer length videos. For evaluation of IBF, we assume two
cooperative proxies C1 and C2 and view the performance of
IBF shared by C1 with C2. Thus, C1 constantly updates and
sends its IBF to C2 which, for a given query, first searches its
own cache and then the IBF of C2.
Synthetically generated data set: We generate synthetic

data, with {10%,30%,50%} of the elements repeating, and
the importance of the elements randomly generated between
1 and 50. In order to determine what kinds of data distributions
IBF will be most useful on, we generate three kinds of data
distributions. In the first distribution, each element occurs in
the data stream with equal probability, irrespective of the
importance (See Fig. 9). In the second and third distribution,
the probability of occurrence of an element is directly (Fig. 15)
and inversely (Fig. 12) proportional to its importance respec-
tively. Thus, in the second dataset, important elements occur
more frequently, and in the third one they occur less frequently.

E. Results

We now explain the behavior of Bloom filters in Tab. IV-C
by giving stream of elements from synthetic data set, as well



as youtube video data set as input. We calculate weighted false
positive and weighted false negative, along with the FP and
FN for elements with a particular importance values, for all
importance values.

Youtube data set: In our first set of experiments, we
assign the importance value for videos directly proportional
to its length, scaling the importance values to the range 0-49.
However, due to the presence of a few outliers of extremely
long length, this distribution is skewed. Thus we assign the
importance value proportional to importance for the bottom
90 percentile in the range 0-49, and capped the importance
value of the very long videos at an importance value of 50.
This leads to the distribution of importance amongst elements
as shown in Figure 3. Figures 4 and 5 show the false positive
and false negatives for this dataset.

Summary. Note that, IBF has up to 30% less false positives
for almost all data items in comparison to SBF. At the same
time, IBF has the same or lower false negatives for items with
higher importance. That is IBF has lower false positives and
lower false negatives for items with higher importance. Notice
that in both Imp-Insert and M

2 -Insert, a trend of decreasing
FN rates with increasing importance can be observed. This is
consistent with what we expect from the theory developed in
Section III where items with lower importance may be evicted
from IBF due to deletion operation although such items are
present in main storage. Overall, the result on real data set
confirms our belief that IBF is indeed a practical solution to
handle indexing and membership queries while taking into
account importance values of the data items.

In our second set of experiments, we assign the importance
value based on the percentile of the video length. Thus, there
are an equal number of videos for all importance values. The
distribution of importance values, and false positives and false
negatives are shown in Figures 6, 7 and 8 respectively. The
results are similar to those observed in first set of experiments,
with both M/2 Insert and Imp-Insert distinctly performing
better than SBF to index data items with higher importance.

In all of the above experiments with IBF-H, a variant of
IBF-MC, behaves almost similar to IBF-MC. Our objective
was to evaluate a heuristic IBF deletion scheme where the
deletion is proportional to importance values mapped to cells.
However, this deletion scheme does not seem to be effective in
comparison to random delete operation. We wish to investigate
this behavior in the future.

Synthetic data set: Fig. 10 and Fig. 11 show false positive
and false negative for different importance values with respect
to distribution of items in Fig. 9. We can observe that with
respect SBF, IBF has lower false positives for almost all the
importance values, and at the same time, it has about the
same or lower false negatives for items with more importance.
This matches with the overall goal we had set initially. When
important elements occur less frequently, however, as we
observe in Figures 12, 13 and 14, BF and SBF are not suitable
to keep low FP and low FN for more important elements in
the data stream. As seen in Fig. 13 and Fig. 14, FP rates go
up as importance increases. This is undesirable behavior for
elements with higher importance. Notice, however, that IBF-
MC, results in low false positives, and low false negatives
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for elements with high importance. IBF-H behaves similarly,
but with higher false negatives than IBF-MC. IBF-2C shows
clear distinction between 2 classes - those of higher and lower
importance in false negatives. For importance values greater
than 35, IBF has about 4% lower false negatives, and about
8% lower false positives than SBF.
Now, as observed in real data sets, it is expected that

there are comparatively less number of items with higher
importance. However, it is interesting to see how IBF behaves
when there are more number of important items with higher
importance. Does IBF match performance of importance-

agnostic SBF? As can be seen in Fig 15, Fig. 16 and Fig. 17,
IBF performs as good as SBF in maintaining false positives
and false negatives for higher importance values. Thus, IBF
can handle different data distributions, and still achieve our
goal of capturing data semantics.
In Tab. II, we show wFP and wFN values for both sets of

experiments. For dataset 1, IBF-MC (for example) has several
fold lower FP and wFP values than SBF. SBF has wFP of
26% whereas IBF has wFP of only 6%, thus resulting in 4-
fold better performance. At the same time, the increase in false
negatives is marginal, SBF has wFN of 1% whereas IBF has
wFN of 5%. Similar behavior can be observed for dataset 2.
This shows that IBF captures data semantics well, and results
in low wFP and wFN.

F. Theory verification: expected number of ‘0’ cells

To verify the results of our experiments with that of theory,
in Fig. 18, we plot the number of zeros observed in each
variant of Bloom filter with respect to number of iterations
of inserting data items. We feed the same parameters (for
example, in this case M = 7, K = 5, P = 10) to our
theoretical models which then give the expected fraction of
empty cells analytically, and then confirm that indeed the two
values are similar. Further, from Fig. 18, it can be seen that
BF eventually gets ‘full’ with increasing number of iterations,
whereas SBF and IBF stabilize to a particular value. This
confirms the stable property of IBF through experiments.

V. RELATED WORK

The Load shedding [20] technique is used in scenarios
where limited memory is available to store streaming data.
In such techniques [21], [18], [19], older tuples are evicted
based on some load shedding scheme to make way for new
data items, and then the entire data item is stored in memory.
Our work is different because we do not store the entire data



in memory, instead we use hash functions to represent it in a
Bloom filter. It is easy to see that large data items will quickly
fill up the memory, hence a load shedding scheme will not
be useful, especially when window sizes are also large. An
advantage, however, over our approach is that load shedding
does not introduce false negatives.
Data-importance is studied for join queries in [16], but tuple

eviction is based on load shedding. The Stable Bloom filter
(SBF) discussed in [12] indexes streaming data, but the scheme
does not consider data-importance. Moreover, SBF deletes
cells at random, which we believe is too simplistic. Our work
provides a more complete solution, motivated by the fact that
streaming data items have importance semantics.
Counting Bloom filters [13] and Spectral Bloom filters [11]

are not directly applicable to our problem, because they
assume that the set cardinality is known (and hence the FP an
FN rates can be optimized by tuning other parameters). We
make no such assumption, and provide a solution that can deal
with unbounded sets, and fluctuating data distributions. Aging
Bloom filter [23] is an interesting idea to remove stale data
when indexing a static set in the filter, however, this work also
does not address data-importance, and assumes that older data
ages (or becomes less important over time). We do not make
any such assumption; in fact, all data items in the landmark
window are relevant, and the data-importance is the factor that
guides the insertion and deletion of items in the filter. Time-
decaying Bloom Filter [10] is another work that maintains
the frequency count for each item in a data stream, and the
value of each counter decays with time. Again, this work
also assumes that items in a data stream is time-sensitive, and
does not address data-importance while maintaining the time-
decaying counters. It is also worth noting that, as compared to
all previous work, we measure an importance-centric metric:
the weighted FP and FN rates, which is a more realistic way
of assessing quality of the query result.
Our work is closest to L-priorities bloom filter (LPBF) [15],

which introduces priorities into bloom filters. The LPBF
approach divides the available storage space into a multi-
dimensional bit space. Priority of an object decides the number
of vectors to be used for insertion, deletion and query. The
technique is shown to yield differentiated false positive rates
based on priority. While we share similar goals, our approach,
we use a common vector space for all objects. Nevertheless, a
comparison of LPBF and IBF would be interesting to improve
cognizance of priority based bloom filter usage.

VI. CONCLUSION

In this work, we presented IBF, a probabilistic data structure
for indexing and querying a stream of data items with different
importance values. IBF differs from most of the prior work
in its consideration of importance values while answering
set membership queries. IBF has several desirable properties,
for instance, the number of empty cells in IBF remain con-
stant, there exists an upper bound on the false positive rate
irrespective of the size of the stream, and it has O(1) time
complexity to index an item and answer a query. Importantly,
IBF produces lower false positives and lower false negatives
for important data items. We evaluated IBF on synthetic as

well as a real-world data set. Our results show that, indeed
IBF is effective in taking data semantics into account, and
considering the importance values of the data items, it results
in 4-fold reduction in weighted false positives in comparison
to SBF. Thus, we believe IBF is an efficient and promising
solution to index a stream of data items. As part of future
work, it is interesting to capture the relationship between m,
K and P analytically. Also, it would be interesting to deploy
IBF in an online environment (for example, as a fast cache in
routers) and analyze its behavior.
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