CS 154 -- Project Report

Name of the Project: - Prisoner’s Dilemma
Submitted by:-

1. Ravi Bhoraskar (08005002)
2. Naman Agarwal (08005062)
Report:-
The Problem that we intend to Solve:-

We have created a full simulation package for the Prisoner's dilemma problem.
It is more of a simulation than a game. First let us give an introduction to what
the prisoner's dilemma is.

Here is a game matrix for 2 players.

B cooperates B defects
A cooperates Agets 3 A gets 0
B gets 3 B gets 5
A defects A gets 5 A gets |
B gets 0 B gets |

For example in a two player game, the two players are called A and B, and the
choices are called “cooperate” and “defect.” Players A and B can play a single
game by separately (and secretly) choosing either to cooperate or to defect.
Once each player has made a choice, he announces it to the other player; and
the two then look up their respective scores in the game matrix. Each entry in
the matrix is a pair of numbers indicating a score for each player, depending on
their choices. Thus, in the example above, if Player A chooses to cooperate
while Player B defects, then A gets 2 points and B gets 3 points. If both players
defect, they each get 1 point.

Our project extends this to iterated rounds of n-player prisoner's dilemma
game. In an iterated game, there are certain strategies possible to determine
whether to cooperate or defect in each round. Some possible strategies are:

e Nasty: Always Defect
e Patsy : Always Cooperate

e Egalitarian : Count the cooperates and defects in the previous rounds
and do what is done more times

e Nabadu : Cooperate if winning, defect otherwise

® . many other strategies are also possible

Our Project shall perform the following:

Input an a n-player game matrix from the user, and determine whether it
is a Prisoner's Dilemma (defined by us)or not.

1. Generate a game matrix for an n-player prisoner's dilemma

2. Play a round for an n-player game and determine the score for each
strategy. (One or more of the strategies can be a user choosing 'c' or 'd")

3. Play a tournament, where every 2 strategies play one another, and display
the average score for each strategy.

4. Based on the history of previous rounds, we try and predict what strategy
each of the n players is using. To do this we run through each previous
round and see whether he behaved kike a certain strategy or not . If he
did then we increment his character counter by 1 and then average the
character count out. This gives the probability of a player playing with
that particular strategy. And now we run the games again and using the
probability data we calculate the expectation value of the scores.

Hence we suggest to the user (if he is playing an n-player game), whether
he should 'cooperate' or 'defect' in the next round to maximise his score.

Functionality of the program

We have created an initial list containing all the strategies which are
predefined. At the start the function called (simulatesupergame) is called which
asks the user to input whether he wants to play an n-player game or wants to
run the tournament. Accordingly the function (simulatenplayers) or
(simtournament) is called.

Simulatenplayers

This function takes the number of players, humans , strategies to play against
(through a different function inputstrat) and the number of rounds as input from
the user and then calls a function (gamestart) using the inputs as arguements.

SimTournament

This function takes in the strategies to be pitted against as input from the user
(using the same inputstrat function).Then calls the function (tournament)

(Gamestart)

This is the most important function as it runs through the game.Two 2-d
vectors are initialised one for maintaining the history of the game so far and
one for the value of characters assigned to the unknown players.

The function (Simulateround) generates the result for a single round by taking

input from the human users and by generating the result from the strategies.
Then it further calls (UpdateHistory) which updates the history vector and
adds the result of the present round to it. Then a call to (UpdateCharMatrix)
i1s made which updates the charvec (2d vectors of the characters) and further
(updateScore) is returned which returns the updated list of scores (i.e. the
scores at the end of this round)

While taking input from the user we do allow the user to take help. This is the
function call that suggests the best possible alternative to the user.

If the user takes the help then a function (processchar) is called with the
arguments the list of the character values. The function (processchar) then
does the calculation for the expected value of the scores of both the alternatives
and then returns the better alternative.

The game runs at the end of the specified number of rounds it returns the final
score list.

(Tournament)

The tournament runs the a 2 players prisoners dilemma game taking all
possible combinations of the given list of strategies and then prints out the
scores of individual matches in a tabular form.

[_imitations

The strategy deciphering is limited to only a check through a few
strategies it can be expanded to more strategies.

Also the help function does take considerable time if it is run against a lot
of players.

Special Features

Effective use of map, zip , assq and other functions related to lists.
Imperative programming is widely applied in the updatehistory and
updatecharmatrix.

