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1 Introduction

Infinity. I am sure we all have heard of the word at some moment in our
lives. ‘The Universe is infinite’ or ‘Time is infinite’. But what does it mean for
something to be infinite? At the surface, it looks simple enough. In common
terminology, it means unending, or incessantly vast. As a number, infinity is
simply a number larger than any possible natural number. That is a definition
sufficient for most laypersons, and even most scientists. However, mathemati-
cians are wily creatures who are not quite satisfied with simple things in life.
A guy called Georg Cantor came up one day and asked himself, “What exactly
is this infinity business? How much really is infinity? And is there anything
bigger than infinity? And are all infinities the same?” Weird questions, you
might say. But considering that the fellow was Georg Cantor, and he became
famous enough for us to know his name today, the questions weren’t that foolish
after all.

In this article, we shall present in some amount of mathematical rigour, the
notions of infinity. Many of these might seem counter-intuituve to you. In fact,
you might also ask why all of this should be necessary. But in mathematics, def-
initions need to be strict, so that we do not have inconsistencies and paradoxes.
For practical purposes, the layman’s notions could be sufficient, but not to a
mathematician who is trying to consolidate the foundations of mathematics.

2 Sets and Sizes of ‘Infinities’

Infinity is best defined in terms of sets. A set is simply a collection of things
(things which may themselves also be sets). Sets may be infinite in size. For
example, the set of all natural numbers is a set {1,2,3,4,...} which is infinite
in size. The set of integers is also infinite in size {...-3,-2,-1,0,1,2,3......}. The
question is whether these two infinities are the ‘same in size’, whatever that
means. At first look it looks like they are not. Clearly, the set of integers has
‘more things’ than the set of naturals. Everything that is present in the set of
naturals is present in the set of integers, plus more. However - and here is a
very critical argument - if we are able to establish a one-to-one mapping from
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one set to the other, we say that the two sets are equal in size. For example
{0,1,2,3} and {2,3,4,5} have the same size, since we can define a mapping

• 0 → 2

• 1 → 3

• 2 → 4

• 3 → 5

The same must be true for infinite sets as well, right? And indeed, in case
of natural numbers and integers, we can indeed make such a mapping

• 1 → 0

• 2 → 1

• 3 → −1

• 4 → 2

• 5 → −2

• ....and so on

Note that we would never ‘run out’ of either natural numbers or integers.
Also note that each natural number and each integer, will eventually be covered
in this mapping. Hence, this seems like a legitimate mapping - indeed it is - and
thus we are forced to admit that the size of the set of integers is same as the
size of the set of natural numbers. This is slightly puzzling and counterintuitive,
but true. You will never see such puzzling things happening with finite sets.
But the human mind cannot see infinite sets in their entirety, and hence it is
not possible to reason about them so trivially. However, on some other level, it
does not seem so surprising that integers are the same in number as naturals,
since the set of integers is roughly twice as large as the set of naturals, and
2×∞ = ∞ seems kind of okay. However, is ∞×∞ = ∞ ? Let us construct a
set whose size is ∞×∞.

Consider the set of all ordered pairs of natural numbers. This set would
contain things like (1,1), (1,2), (2,1), (4534,4), (9421066285,5318008) etc. It is
an infinite set, but is this set also the same in size as the set of natural numbers?
Let us try the technique we used above - that of making a mapping to natural
numbers. Let’s try such a mapping

• (1, 1) → 1

• (1, 2) → 2

• (1, 3) → 3

• (1, 4) → 4
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• ....and so on

The problem in this mapping is clearly apparent. We would keep going to
larger and larger natural numbers, but the (1,x) pairs would never end. (2,1)
would map to nothing! Then is all hope lost? Is it indeed so that this set is
‘larger’ than the set of naturals? Hold on! We can define another mapping:

• (1, 1) → 1

• (2, 1) → 3

• (1, 2) → 2

• (3, 1) → 6

• (2, 2) → 5

• (1, 3) → 4

• ....and so on

Figure 1: Mapping for pairs of Naturals

The figure will help you clearly visualize this mapping. Once again, as in
the case of integers, we will run out of neither pairs nor naturals, and all pairs
and all naturals will eventually be covered in the mapping. Thus, the size of
the set of pairs is also the same as the size of the set of natural numbers.

3 A bigger Infinity

This discussion might tempt you to conclude that ‘all infinities are equal in size’.
But our beloved Georg Cantor proved that this is not the case. Consider subsets
of natural numbers. These may be finite subsets like {1,2,3}, {4,5,6,324987}
and also infinite subsets like {1,3,5,7,.....}, {1,11,111,1111.....} and {1,2,3,4.....}
itself. Now consider the set of all such subsets. Call this set the BAAP of
natural numbers. Clearly, BAAP has infinitely many things in it. So can we
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compare the infinity that is the size of BAAP, to the infinity that is the size of
the set of natural numbers? Is this also the same? Georgie proved that this is
not the case. He did not merely fail to come up with a suitable mapping. He
proved that nobody can come up with a suitable mapping. The natural numbers
would run out before all the elements of BAAP are covered. Thus, he proved
that BAAP contains strictly more elements than the set of natural numbers.
We can understand this by observing that number of elements in BAAP will
be 2∞. This is exponentially greater than the number of elements in the set of
naturals, and it turns out that this is just too much for the set of naturals to
‘expand into’.

4 Conclusion

In fact, Georgie went one step further. He proved that there are an infinite
number of infinities, each strictly greater than the previous one, and the size of
the set of these infinities is the same as the size of the set of natural numbers.
If you find all this weird and hard to digest, don’t worry. You are not alone.
A lot of Georg Cantor’s contemporaries scoffed at his theories, and he faced
opposition from fellow mathematicians and even the church. However, Cantor’s
theories are well established and accepted universally now. Though he faced
ostracision and ridicule in his life, he received great posthumous glory, and his
name is remembered today as one of the greats in mathematics.
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